TEX/Favorites
Aus GeoGebra-Institut Landau (RLP)
Zur Navigation springenZur Suche springen| \textstyle \frac{x}{y} | \frac{x}{y} |
| \textstyle \sum_x^n | \sum_{x=1}^{n} |
| \textstyle \prod_x^n | \prod^{x=1}_{n} |
| \textstyle \int_a^b | \int_{a}^{b} f (x)\,dx |
| \textstyle \frac{\partial x}{\partial y} | \frac{\partial x}{\partial y} |
| \textstyle \sqrt x | \sqrt{x} |
| \textstyle \sqrt[3]{x} | \sqrt[3]{x} |
| \textstyle f(x) | f(x) |
| \lim | \lim_{x\to\infty} |
| *** | |
| \sin | \sin (x) |
| \cos | \cos (x) |
| \tan | \tan (x) |
| \log | \log (x) |
| \ln | \ln (x) |
| *** | |
| \le | \le |
| \ge | \ge |
| \neq | \neq |
| \approx | \approx |
| \equiv | \equiv |
| \propto | \propto |
| \infty | \infty |
| *** | |
| \alpha | \alpha |
| \beta | \beta |
| \gamma | \gamma |
| \delta | \delta |
| \epsilon | \epsilon |
| \zeta | \zeta |
| \eta | \eta |
| \theta | \theta |
| \vartheta | \vartheta |
| \kappa | \kappa |
| \lambda | \lambda |
| \mu | \mu |
| \xi | \xi |
| \pi | \pi |
| \rho | \rho |
| \sigma | \sigma |
| \tau | \tau |
| \phi | \phi |
| \varphi | \varphi |
| \chi | \chi |
| \psi | \psi |
| \omega | \omega |
| *** | |
| \Rightarrow | \Rightarrow |
| \rightarrow | \rightarrow |
| \Leftarrow | \Leftarrow |
| \leftarrow | \leftarrow |
| \Leftrightarrow | \Leftrightarrow |
| \vec{x} | \vec{x} |
| \mapsto | \mapsto |
| *** | |
| ( | \left( |
| ) | \right) |
| [ | \left[ |
| ] | \right] |
| \{XXX\} | \left\{ {XXX} \right\} |
| \{XXX | \left\{ {XXX} \right\. |
| \textstyle {n \choose k} | {n \choose k} |
| *** | |
| \box | \box |
| \forall | \forall |
| \exists | \exists |
| \in | \in |
| \not\in | \not\in |
| *** | |
| \ a \wedge b | \ a \wedge b |
| \ a \vee b | \ a \vee b |
| \ a \Rightarrow b | \ a \Rightarrow b |
| \ a \Leftrightarrow b | \ a \Leftrightarrow b |
| *** | |
| \neg A | \neg A |
| \exist n\in M | \exist n\in M |
| \forall n\in M | \forall n\in M |
| \ A \cap B | \ A \cap B |
| \ A \cup B | \ A \cup B |
| \ A \setminus B | \ A \setminus B |
| *** | |
| \overline{AB} | \overline{AB} |
| \vec{AB} | \vec{AB} |
| AB \right| | AB \right| |
| \ AB^{+} | \ AB^{+} |
| \ AB^{-} | \ AB^{-} |
| \operatorname{Zw} (A, Q, P) | \operatorname(Zw) (A, Q, P) |
| ...\} | ...\} |
| *** | |
| \angle ABC | \angle ABC |
| \ g \perp \ h | \ g \perp \ h |
| \ g \not\perp \ h | \ g \not\perp \ h |
| b | b |
| b | b |
| \operatorname{koll}(A, B, C) | \operatorname{koll}(A, B, C) |
| \operatorname{komp}(A, B, C) | \operatorname{komp}(A, B, C) |
| *** | |
| \alpha \tilde = \beta | \alpha \tilde {=} \beta |
| \alpha \equiv \beta | \alpha \equiv \beta |
| \frac{x} {y} | \frac{x} {y} |
| x_{i} | x_{i} |
| x^{i} | x^{i} |
| *** | |
| \begin{pmatrix} x \\ y \\ z \end{pmatrix} | \begin{pmatrix} x \\ y \\ z \end{pmatrix} |
| \begin{pmatrix} x & y \\ z & v \end{pmatrix} | \begin{pmatrix} x & y \\ z & v \end{pmatrix} |